User Identification Using Gait Patterns on UbiFloorII

نویسنده

  • Jaeseok Yun
چکیده

This paper presents a system of identifying individuals by their gait patterns. We take into account various distinguishable features that can be extracted from a user's gait and then divide them into two classes: walking pattern and stepping pattern. The conditions we assume are that our target environments are domestic areas, the number of users is smaller than 10, and all users ambulate with bare feet considering the everyday lifestyle of the Korean home. Under these conditions, we have developed a system that identifies individuals' gait patterns using our biometric sensor, UbiFloorII. We have created UbiFloorII to collect walking samples and created software modules to extract the user's gait pattern. To identify the users based on the gait patterns extracted from walking samples over UbiFloorII, we have deployed multilayer perceptron network, a feedforward artificial neural network model. The results show that both walking pattern and stepping pattern extracted from users' gait over the UbiFloorII are distinguishable enough to identify the users and that fusing two classifiers at the matching score level improves the recognition accuracy. Therefore, our proposed system may provide unobtrusive and automatic user identification methods in ubiquitous computing environments, particularly in domestic areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

User Identification Using User's Walking Pattern over the ubiFloorII

In this paper, we propose ubiFloorII, a novel floor-based user identification system to recognize humans based on their walking pattern such as stride length, dynamic range, foot angle, and stance and swing time. To obtain users walking pattern from their gait, we deployed photo interrupter sensors instead of switch sensors used in ubiFloorI. We developed a software module to extract walking pa...

متن کامل

IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion

The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various heuristic and high-level features from gait motion data to identify discriminative gait signatures...

متن کامل

A Framework for Exploring the Frequent Patterns based on Activities Sequence

In recent years, the development of the use of location-based tools has made it possible to produce geometric trajectories from the user's movement paths. In this way, users' goal of traveling and related activities can be considered in addition to the geometry and route shape. the user activity trajectory represents the sequence of the visited activities and its related analysis as presented i...

متن کامل

Gait-based User Classification Using Phone Sensors

We investigate whether smartphones can be used to distinguish different users based on their gait, the rhythmical body movements of human beings as they walk. To this end, we propose, describe, and experimentally evaluate a system that classifies peoples’ gait patterns using the tri-axial accelerometer of the Motorola Droid phone. The system employs the wavelet transform to extract features fro...

متن کامل

Real-Time Identification Using Gait Pattern Analysis on a Standalone Wearable Accelerometer

Wearable devices can gather sensitive information about their users. For this reason, automated authentication and identification techniques are increasingly adopted to ensure security and privacy. Furthermore, identification can be used to automatically customize operations according to the needs of the current user. A gait-based identification method that can be executed in real time on devic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011